Oracle Database Design - 2024

KRYSTIAN WOJTKIEWICZ

Last Example from previous lecture

Task 7. List the values of all attributes of the Functions relation	FUNCTION	MIN_MICE	MAX_MICE
SELECT * FROM Functions;			
	BOSS	90	110
	THUG	70	90
	CATCHING	60	70
	CATCHER	50	60
	CAT	40	50
	NICE	20	30
	DIVISIVE	45	55
	HONORARY	6	25

Task 8. Specify the functions that cats perform in each band.

SELECT DISTINCT band_no,function FROM
Cats;

—	
1	NICE
1	DIVISIVE
3	THUG
2	CATCHING
1	BOSS
2	NICE
2	CATCHER
4	CATCHING
3	CATCHING
2	THUG
3	CAT
3	NICE
4	CAT
4	CATCHER

FUNCTION

14 rows selected

BAND NO

The simplest form of the SELECT command can be extended by:

- string, date or number constant (date or string in single quotes) called pseudo-column.

Task 9. Specify the minimum and maximum mice ration connected with each function

FROM Functions;

BOSS	can eat from	90	to	110
THUG	can eat from	70	to	90
CATCHING	can eat from	60	to	70
CATCHER	can eat from	50	to	60
CAT	can eat from	40	to	50
NICE	can eat from	20	to	30
DIVISIVE	can eat from	45	to	55
HONORARY	can eat from	6	to	25

'CANEATFROM' MIN_MICE 'TO' MAX_MICE

8 rows selected

FUNCTION

Task 10. Specify the minimum and *maximum mice ration connected with* each function (use column aliases)

```
SELECT function Role, 'can eat
from ' " ",
```

min mice "Min mice", ' to ' " ", max_mice "Max mice" FROM Functions;

BOSS	can eat from	ı 90	to	110
THUG	can eat from	n 70	to	90
CATCHING	can eat from	n 60	to	70
CATCHER	can eat from	n 50	to	60
CAT	can eat from	n 40	to	50
NICE	can eat from	n 20	to	30
DIVISIVE	can eat from	n 45	to	55
HONORARY	can eat from	n 6	to	25

8 rows selected

ROLE

	BARI	672
	MICKA	864
Tyopplo	LUCEK	516
Example	SONIA	660
	LATKA	480
Task 11. Determine the annual mice consumption for	DUDEK	480
each cat.	MRUCZEK	1632
SELECT name, (NVL(mice ration,0)+NVL(mice extra,0))*12	CHYTRY	600
"Eats annually" FROM Cats;	KOREK	1056
FROM Cals,	BOLEK	1116
	ZUZIA	780
	RUDA	768
	PUCEK	780
	PUNIA	732
	BELA	624
	KSAWERY	612
	JACEK	804
	MELA	612
	18 rows selected	

Eats annually

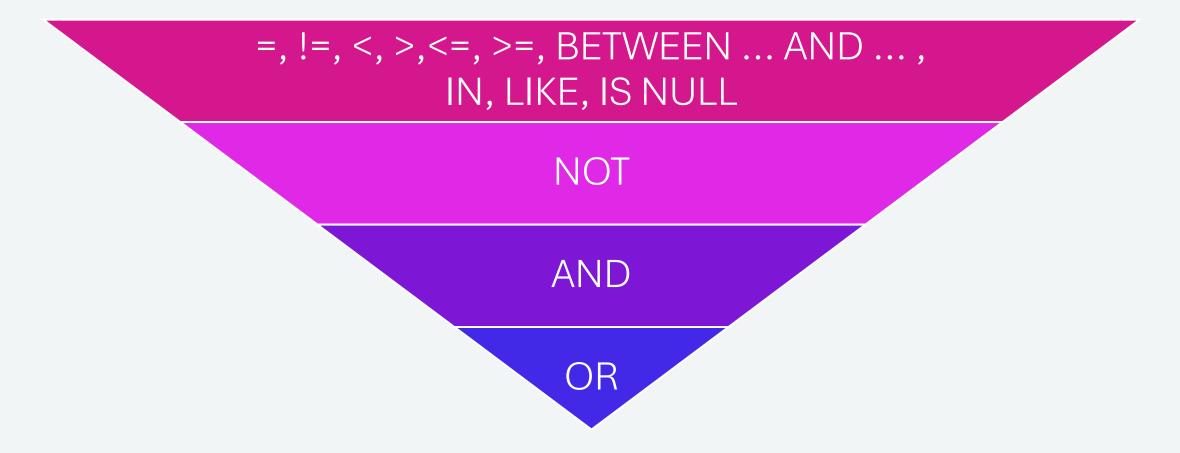
NAME

Task 12. Specify the minimum and maximum mice ration connected with each function.

SELECT function||' can eat
from '||min_mice||' to
'||max_mice||
 ' mice per month'
"Function possibilities"
FROM Functions;

Function possibilities

BOSS can eat from 90 to 110 mice per month THUG can eat from 70 to 90 mice per month CATCHING can eat from 60 to 70 mice per month CATCHER can eat from 50 to 60 mice per month CAT can eat from 40 to 50 mice per month NICE can eat from 20 to 30 mice per month DIVISIVE can eat from 45 to 55 mice per month HONORARY can eat from 6 to 25 mice per month


The WHERE clause enables rows selection operations on the relation specified by the FROM clause.

This selection takes place according to the condition (value of the logical expression) placed after the WHERE clause.

NAME

_ _ _ _ _ _ _ _ _ _ _ _ _

Example	MICKA
Tral 12 Find the many of all enter	SONIA
<i>Task 13.</i> Find the names of all cats who perform the function NICE	RUDA
SELECT name	BELA
FROM Cats	4 rows selected
WHERE function='NICE';	

11

NULL value (in fact it is a lack of value!) is different from zero for numeric types or, e.g., from an empty sign for character types (in Oracle this value supported by NVL function).

It introduces, de facto, trivalent logic (TRUE, FALSE, NULL) instead of traditional divalent logic (TRUE, FALSE).

NOT	TRUE	FALSE	NULL
	FALSE	TRUE	NULL

AND	TRUE	FALSE	NULL
TRUE	TRUE	FALSE	NULL
FALSE	FALSE	FALSE	FALSE
NULL	NULL	FALSE	NULL

OR	TRUE	FALSE	NULL
TRUE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	NULL
NULL	TRUE	NULL	NULL

NULL values may have attributes for which their optionality is allowed.

In this situation, the value of the arithmetic expression with the argument of NULL value is NULL.

An expression with a relational operator (e.g., <) that contains an arithmetic expression of NULL value also has a NULL value.

The NULL value in arithmetic expressions therefore requires special handling (e.g. via the NVL function).

GENDER

	TUBE	M
Example	ZERO	M
	EAR	\overline{W}
Task 14. Find cats that don't get extra mice.	SMALL	М
SELECT nickname,gender ' ' "GENDER"	BOLEK	М
FROM Cats WHERE mice extra IS NULL;	FAST	$\overline{\mathcal{W}}$
	REEF	М
	HEN	$\overline{\mathcal{M}}$
	MAN	М
	CAKE	М
	LADY	M

NICKNAME

_ _ _ _ _ _ _ _

Examp]	le

Task 15. Find cats with ration of mice between 50 and 60.

TUBE

BOLEK

MAN

LADY

SELECT nickname

4 rows selected

FROM Cats

WHERE mice_ration BETWEEN 50 AND 60;

NAME

Example

Task 16. Find the names of cats performing the function of THUG or CATCHING, whose direct boss is TIGER.

KOREK BOLEK

PUCEK

3 rows selected

_ _ _ _ _ _ _ _ _

SELECT name

FROM Cats

WHERE function IN
 ('THUG', 'CATCHING') AND
chief='TIGER';

NAME

T 1	
Exampl	e
I• _	

Task 17. Find cats whose have as a second letter O in their name.

SELECT name

FROM Cats

WHERE name LIKE '_0%';

SONIA KOREK

BOLEK

The '_' character in the pattern means any character and the '%' character means any rest of the string. If it is necessary to check the presence of '_' or '%' in the string, they should be placed after the citation character defined in the ESCAPE clause, e.g.:

WHERE name LIKE '_&_U_&%U%' ESCAPE '&'

	NICE	25	47	
Example	NICE	20	35	
	BOSS	103	33	
<i>Task 17. Specify the nickname, function, ration of mice and ration extra for cats with</i>	THUG	75	13	
not null ration extra of mice, whose ration of mice exceeds 70 or that have the function	THUG	72	21	
NICE.	NICE	22	42	
SELECT function,NVL(mice_ration,0) "MICE",mice_extra	NICE	24	28	
FROM Cats				
WHERE mice_extra IS NOT NULL	7 rows selected			

FUNCTION MICE

AND

(NVL(mice_ration,0)>70 OR
function='NICE');

MICE_EXTRA

_ _ _ _ _ _ _ _ _ _ _

ORBER BY

The ORDER BY clause is used to explicitly order them against the value of the attribute/expression (list of attributes and/or expressions). The following elements may appear in the clause:

- attribute identifier,
- expression,
- alias of the expression or of attribute from the SELECT clause,
- number of the expression/attribute in the SELECT clause.

The default ordering direction is ascending (ASC).

The descending direction is defined in ORDER BY clause by the word DESC after attribute/expression, by which ordering is performed.

Ordering can be also carried out implicitly. It is part of the following operations: CREATE INDEX, DISTINCT, GROUP BY, ORDER BY, INTERSECT, MINUS, UNION, joining of unindexed relations.

Example				
Task 18. Display enemy data according decreasing hostility				
SELECT hostility_degree "How dangerous",				
enemy_name "Enemy name"				
FROM Enemies				
ORDER BY hostility_degree DESC;				

How dangerous	Enemy name
10	KAZIO
10	WILD BILL
7	UNRULY DYZIO
5	SLYBOOTS
4	DUN
3	BASIL
2	REKS
1	BETHOVEN
1	SLIM
1	STUPID SOPHIA

Task 19. Display data of cats for which the ration of mice exceeds 60. Sort data first ascending by gender and name of the band and then descending by date of join to the herd and then ascending by function name.

SELECT nickname "Nickname", gender "Gender",

band_no "Band", in_herd_since "Join date",

mice ration "Eats"

FROM Cats WHERE mice ration>60

ORDER BY 2, "Band", in_herd_since
DESC, function;

Nickname	Gender	Band	Join date	Eats
TIGER	М	1	2002=01-01	103
CAKE	М	2	2008=12-01	67
BALD	М	2	2006=08-15	72
ZOMBIES	М	3	2004=03-16	75
REEF	М	4	2006=10-15	65
FAST	W	2	2006=07-21	65
HEN	W	3	2008=01-01	61