
Oracle Database
Design - 2024

K R Y S T I A N
W O J T K I E W I C Z

Last example from the previous lecture

Task 19. Display data of cats for which the ration of mice

exceeds 60. Sort data first ascending by gender and name

of the band and then descending by date of join to the herd

and then ascending by function name.

SELECT nickname "Nickname",gender "Gender",

 band_no "Band",in_herd_since "Join

date",

 mice_ration "Eats"

FROM Cats WHERE mice_ration>60

ORDER BY 2,"Band",in_herd_since

DESC,function;

Nickname Gender Band Join date Eats

---------- ------ ---------- ------------------ ----

TIGER M 1 2002=01-01 103

CAKE M 2 2008=12-01 67

BALD M 2 2006=08-15 72

ZOMBIES M 3 2004=03-16 75

REEF M 4 2006=10-15 65

FAST W 2 2006=07-21 65

HEN W 3 2008=01-01 61

7 rows selected

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 2

GROUP BY

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 3

GROUP BY - remarks

Allows grouping the output according to value of attribute or expression and displays one result row
for each group

The SELECT clause, if grouping is used, can only contain

•attributes/expressions listed after the GROUP BY clause,
•aggregate functions,
•pseudo-columns, or
•expressions, which include these elements.

If grouping is performed by of an attribute/expression that can have a null value (NULL), this value is
treated as an additional value for the attribute/expression (an associated group is created)

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 4

Example

Task 20. Find nicknames of cats with subordinates.

SELECT chief

FROM Cats

GROUP BY chief;

CHIEF

TIGER

ZOMBIES

BALD

REEF

HEN

 6 rows selected

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 5

Example

Task 21. Find the number of female cats performing a specific function in

each band.

SELECT COUNT(*)||

' number of female cats in the

'||band_no||

' band with the function of '||function

"Statistics for functions"

FROM Cats

WHERE gender='W'

GROUP BY band_no,function;

Statistics for functions

2 number of female cats in the 1 band with the function of NICE

1 number of female cats in the 2 band with the function of CATCHING

1 number of female cats in the 2 band with the function of NICE

1 number of female cats in the 3 band with the function of CATCHING

1 number of female cats in the 3 band with the function of NICE

1 number of female cats in the 4 band with the function of CAT

1 number of female cats in the 4 band with the function of CATCHER

7 rows selected

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 6

COUNT (* | {[DISTINCT | ALL] expression})

The COUNT function always counts rows in a group.

If the argument of the function is *, all rows are counted.

If the argument is an expression (its special case is e.g. an attribute), only those rows for which the expression is
different from NULL are counted (repetitions of the value of the expression are taken into account - default ALL).

If, additionally, the DISTINCT qualifier appears before the expression rows with a repetitive expression values are
omitted in the count.

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 7

More aggregate functions

SUM ([DISTINCT | ALL] expression)
returns the sum of the values of non-NULL expressions taken from each row of the group; DISTINCT omits the

repetitive expression value from the calculation (the default is ALL),

AVG ([DISTINCT | ALL] expression)
returns the arithmetic average of the values of non-NULL expressions taken from each row of the group; DISTINCT

omits the repetitive expression value from the calculation (the default is ALL),

MAX (expression)
returns the maximum value among non-NULL expression values, taken from each row of the group,

MIN (expression)
returns the minimum value of non-NULL expressions values taken from each row of the group.

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 8

Example

Task 22. Find the average consumption of mice for each gender

(including additional rations).

SELECT DECODE(gender,'W','Female

cats',’Male cats’)"Gender",

AVG(NVL(mice_ration,0)+NVL(mice_

extra,0)) "Average consumption„

FROM Cats

GROUP BY gender;

Gender Average consumption

----------- ----------------------

Female cats 57,5

Male cats 68,9

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 9

SELECT CASE gender

WHEN 'W' THEN 'Female cats’

ELSE 'Male cats' END "Gender",

AVG(NVL(mice_ration,0)+NVL(mice_extra,0))

"Average consumption"

FROM Cats GROUP BY gender;

HAVING clause

The HAVING clause is used to select groups resulting from the grouping operation (GROUP BY).

It cannot occur without the GROUP BY clause.

The condition after HAVING determines which groups are selected.

This condition can be built only on the basis of
• the attribute/expression (attributes/expressions) appearing in the GROUP BY clause,
• constants or
• aggregate functions.

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 10

Example

Task 23. Find bands with "mice chimneys" (the ratio of mice of a small

number of cats far exceeds the ration of other cats).

SELECT band_no "Chimney band",

AVG(mice_ration) "Average ration",

(MAX(NVL(mice_ration,0))+

MIN(NVL(mice_ration,0)))/2

"(MAX+MIN)/2"

FROM Cats

GROUP BY band_no

HAVING (MAX(NVL(mice_ration,0))+

MIN(NVL(mice_ration,0)))/2>

AVG(NVL(mice_ration,0));

Chimney band Average ration (MAX+MIN)/2

---------------- ---------------- -----------

1 50 62,5

4 49,4 52,5

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 11

CONNECT BY and START WITH clauses

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 12

Off-topic

Problem: define a tree structure where every parent has

a one-to-many relationship to its children.

So it leads to this:

<parent> owns <children>

<parent> is boss of <children>

<parent> is derived from <children>

<parent> is composed of <children>

<parent> is generalization of <children>

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 13

Hierarchy - solution

The basic SELECT command syntax presented earlier
can be supplemented with additional CONNECT BY and
START WITH clauses.

They are most often used when we consider hierarchical
relationship, i.e., relationship that defines the hierarchy,
e.g., superior - subordinate.

The Oracle uses such a relationship to build a tree that
reflects this hierarchy.

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 14

CONNECT BY and START WITH clauses

The START WITH clause specifies the condition
indicating the row which is to be the root of the tree.

If n rows satisfies the condition, n trees are built.

The CONNECT BY clause indicates the condition
defining the way the tree is built, i.e., determining which
row should be attached as the current leaf of a given
node.

The CONNECT BY clause is followed by the PRIOR
keyword indicating the so-called the parent attribute (in
the row of the current node) from which the value is
taken to compare with the value of the second attribute
of condition, called the child attribute (from the row that
can become a leaf).

CONNECT_BY_ROOT attribute

returns, for the indicated attribute from the
currently supported row in the tree, the value of
this attribute in the row of the root,

SYS_CONNECT_BY_PATH function
(attribute, separator)
returns, for the supported row, the path in the tree

from the row of the root to this row, in the form of
a string built from the successive values of the
indicated attribute at each intermediate node,
each value separated by a string separator.

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 15

Example

Task 24. Determine the hierarchy in a herd of cats from the

herd leader. In the built tree, skip the cat named KOREK

together with all his subordinates and cats with the function

NICE.

SELECT name "Name",level "Position",

 band_no "Band",NVL(mice_ration,0) "Eats"

FROM Cats WHERE function!='NICE'

CONNECT BY PRIOR nickname=chief AND name!='KOREK'

START WITH chief IS NULL

ORDER BY band_no,level;

Name Position Band Eats

--------------- ------------- ------------- ----

MRUCZEK 1 1 103

CHYTRY 2 1 50

BOLEK 2 2 72

JACEK 3 2 67

ZUZIA 3 2 65

BARI 3 2 56

PUCEK 2 4 65

LATKA 3 4 40

MELA 3 4 51

KSAWERY 3 4 51

DUDEK 3 4 40

 11 rows selected

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 16

Example

Task 25. For each cat belonging to the subtrees with

roots ZOMBI and RAFA (nicknames of cats) present

the nickname of the cat from the root of the subtree

and, in the form of further nicknames, paths from the

nickname of the cat from the root to the nickname of

the served cat.

SELECT nickname "Cat",

DECODE(CONNECT_BY_ROOT nickname,

 nickname,NULL,CONNECT_BY_ROOT nickname) "Chief",

 SYS_CONNECT_BY_PATH(nickname,'/') "Nickname path"

FROM Cats

CONNECT BY PRIOR nickname=chief

START WITH nickname IN ('ZOMBIES','REEF');

Cat Chief Nickname path

---------- ---------- ----------------

REEF /REEF

EAR REEF /REEF/EAR

LADY REEF /REEF/LADY

MAN REEF /REEF/MAN

SMALL REEF /REEF/SMALL

ZOMBIES /ZOMBIES

FLUFFY ZOMBIES /ZOMBIES/FLUFFY

HEN ZOMBIES /ZOMBIES/HEN

ZERO ZOMBIES /ZOMBIES/HEN/ZERO

 9 rows selected

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 17

The end of part I

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 18

HORIZONTAL nad VERTICAL JOINS

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 19

Horizontal joining

In the case of a horizontal join, the result relation row is formed through concatenation of the rows of joined relations (listed in the
FROM clause after the comma or as part of the JOIN operator) meeting the so-called joining condition.

The joining condition must include a reference to at least one attribute of each of the joined relations.

If the JOIN operator is not used in the query (relations are listed after the comma in the FROM clause), then it is implemented as
the cartesian product of the joined relations (with its possible selection of the rows according to the joining condition or according
to condition mentioned in the WHERE clause).

If the JOIN operator is used, the joining condition is defined after the ON clause of the operator (theta-join).

In most cases, we join relations referentially related (the joining condition is based on keys, i.e., on the primary and foreign key, of
the related relations).

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 20

Example

Task 26. Find female cats who participated in incidents.

Display, in addition, the names of the enemies involved in

the incidents and descriptions of incidents.

SELECT C.nickname "Female cat", enemy_name

"her enemy", incident_desc "Incident

description"

FROM Cats C,Incidents I

WHERE C.nickname=I.nickname AND gender='W';

Female cat her enemy Incident description

---------- --------------- -----------------------------------

EAR UNRULY DYZIO HE THREW STONES

FAST STUPID SOPHIA SHE USED THE CAT AS A CLOTH

FLUFFY SLIM SHE THREW CONES

HEN DUN HE CHASED

LADY KAZIO HE WANTED TO SKIN OFF

LITTLE SLYBOOTS HE RECOMMENDED HIMSEF AS A HUSBAND

MISS KAZIO HE CAUGHT THE TAIL AND MADE A WIND

MISS WILD BILL HE BITCHED

 8 rows selected

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 21

Example – other implementations
SELECT C.nickname "Female cat", enemy_name

"her enemy", incident_desc "Incident

description"

FROM Cats C,Incidents I

WHERE C.nickname=I.nickname AND gender='W';

SELECT C.nickname "Female cat",

enemy_name "her enemy", incident_desc

"Incident description"

FROM Cats C JOIN Incidents I ON

C.nickname=I.nickname

WHERE gender='W';

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 22

SELECT nickname "Female cat",enemy_name

"her enemy", incident_desc "Incident

description"

FROM Cats JOIN Incidents USING(nickname)

WHERE gender='W';

SELECT nickname "Female cat",enemy_name

"her enemy", incident_desc "Incident

description"

FROM Cats NATURAL JOIN Incidents

WHERE gender='W';

Example

Task 27. Find cats hunting on the site FIELD which have

enemies with hostility degree above 5.

SELECT DISTINCT C.nickname "Has enemy in

the field"

FROM Cats C,Incidents I,Enemies E,Bands B

WHERE C.band_no=B.band_no AND

C.nickname=I.nickname AND

I.enemy_name=E.enemy_name AND

site IN ('FIELD','WHOLE AREA') AND

hostility_degree>5;

Has enemy in the field

TIGER

MISS

TUBE

BOLEK

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 23

Example – other implementations
SELECT DISTINCT C.nickname "Has enemy in the field"

FROM Cats C,Incidents I,Enemies E,Bands B

WHERE C.band_no=B.band_no AND C.nickname=I.nickname AND I.enemy_name=E.enemy_name AND site IN ('FIELD','WHOLE AREA')

AND hostility_degree>5;

SELECT DISTINCT C.nickname "Has enemy in the field"

FROM Cats C JOIN Incidents I ON C.nickname=I.nickname JOIN Enemies E ON I.enemy_name=E.enemy_name JOIN Bands B ON

C.band_no=B.band_no

WHERE site IN ('FIELD','WHOLE AREA') AND hostility_degree>5;

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 24

SELECT nickname "Has enemy in the field", band_no

FROM Cats NATURAL JOIN Incidents NATURAL JOIN Enemies JOIN Bands USING(band_no)

WHERE site IN ('FIELD','WHOLE AREA') AND hostility_degree>5;

Example

Task 28. In each of the bands, apart from his own,

Tiger has placed a spy. He can be recognized by the

fact that in cat hierarchy he reports directly to the

Tiger and not the boss of the band although he is not a

member of the Tiger's band. Find all the Tiger spies.

SELECT C1.nickname "Spy",C1.band_no

"Band„

FROM Cats C1 JOIN Cats C2 ON

C1.chief=C2.nickname AND

C1.band_no<>C2.band_no

WHERE C1.chief='TIGER';

Spy Band

--------------- ----------------------

ZOMBIES 3

BALD 2

REEF 4

1 1 / 1 4 / 2 0 2 3 O R A C L E D A T A B A S E D E S I G N 25

	Slide 1: Oracle Database Design - 2024
	Slide 2: Last example from the previous lecture
	Slide 3: GROUP BY
	Slide 4: GROUP BY - remarks
	Slide 5: Example
	Slide 6: Example
	Slide 7: COUNT (* | {[DISTINCT | ALL] expression})
	Slide 8: More aggregate functions
	Slide 9: Example
	Slide 10: HAVING clause
	Slide 11: Example
	Slide 12: CONNECT BY and START WITH clauses
	Slide 13: Off-topic
	Slide 14: Hierarchy - solution
	Slide 15: CONNECT BY and START WITH clauses
	Slide 16: Example
	Slide 17: Example
	Slide 18: The end of part I
	Slide 19: HORIZONTAL nad VERTICAL JOINS
	Slide 20: Horizontal joining
	Slide 21: Example
	Slide 22: Example – other implementations
	Slide 23: Example
	Slide 24: Example – other implementations
	Slide 25: Example

