

Wrocław University of Science and Technology

10th International Conference on Computational Collective Intelligence ICCCI 2018

Influence Power Factor for User Interface Recommendation System

> Marek Krótkiewicz ¹ Marek.Krotkiewicz@pwr.edu.pl

Krystian Wojtkiewicz¹ Krystian.Wojtkiewicz@pwr.edu.pl

Denis Martins² Denis.Martins@wi.uni-muenster.de

¹ Faculty of Computer Science and Management, Wroclaw University of Science and Technology, Wroclaw, Poland

² ERCIS, University of Muenster, Leonardo-Campus 3, 48149 Muenster, Germany

Bristol, England, United Kingdom, September 7, 2018

Agenda

Motivation

Problem formalization Interface definition Influence power idea Components features Component influence factor Data structure Recommender System Influence power evaluation

Conclusions

Motivation

Figure: Graph of "Internet users per 100 inhabitants 1997 to 2017", years on the x axis, number of users on the y axis, according to the International Telecommunication Union (ITU)

Motivation

Figure: Graph of "Registered Web Sites, according to http://www.internetlivestats.com

- User interface structure
- Ranking and reordering
- Knowledge about users and their preferences

Following formalism is used to identify heterogeneous structures:

 $\{e\} = \{e_1, \dots, e_n\}$ – set of e elements (not changeable, sequence is irrelevant),

 $(e) = (e_1, \ldots, e_n)$ – tuple of e elements (not changeable, sequence is relevant),

 $\langle e \rangle = \langle e_1, \dots, e_n \rangle$ – list of e elements (changeable, sequence is relevant).

Problem formalization Interface definition

Interface I is defined as

$$I = \{s\} = \{s_1, \dots, s_n\}$$
(1)

where each state s is defined as tuple built from set of components C and a template t.

$$s = (C, t) \tag{2}$$

where

$$C = \{c\} = \langle c_1, \dots, c_n \rangle \tag{3}$$

and

$$t = \langle r \rangle. \tag{4}$$

Influence power idea

ŧ

Menu nem	Menu Item 2	Menu Item 3	Menu Item	Menu Item k	н
Left Bar 1	Textarea	1	1	Right Bar 1	нр
Left Bar 2				Right Bar 2	
Left Bar 3				Right Bar 3	
Left Bar				Right Bar	
Left Bar n				Right Bar m	HP
Footer Item	1 Footer Item 2	Footer Item 3	Footer Item	Footer Item i	н
VP1	VP2		VP	VPx	_

Influence power idea

Item 1 Item 2	Item 3 🍐 Ite	m 4 Item 5
---------------	--------------	------------

Figure: Simplified physical adjustment affecting Influence Power

Problem formalization Components features

The component c is built from reference to region r, applied design characteristics d and a link l:

$$c = (r, d, l) \tag{5}$$

where

$$d = (P, a_a, a_m) \tag{6}$$

- P is a list of properties,
- a_a is additive influence power adjustment factor,
- ▶ *a_m* multiplicative influence power adjustment factor.

Problem formalization Components features

The set of properties is defined as:

$$P = \{p\} = \langle p_1, \dots, p_n \rangle \tag{7}$$

where each property is a tuple of feature list F and value list V:

$$p = (F, V) \tag{8}$$

where:

$$F = \langle f_1, \dots, f_n \rangle \tag{9}$$

$$V = \langle v \rangle = \langle v_1, \dots, v_n \rangle.$$
(10)

Problem formalization Component influence factor

The proposed factor is built according to following formula:

$$cip = pip + dip \tag{11}$$

where:

cip – component influence power,

pip – position influence power,

dip - design characteristic influence power.

Data structure

Figure: Database structure for data retrieval system expressed in AML

Influence power evaluation

$$L = [l_{ij}] \tag{12}$$

where each l_{ij} is computed according to following equation

$$l_{ij} = (c_s, c_e, cip) \tag{13}$$

where:

 c_s – start component in the link,

 c_e – end component in the link,

cip – computed influence power.

Influence power evaluation

15/19

Interface Design Effectiveness – IDE matrix for each of states as:

$$IDE = [ide_{ij}] \tag{14}$$

where each ide_{ij} is computed according to following equation

$$ide_{ij} = (c_s, c_e, uu) \tag{15}$$

where:

- c_s start component in the link,
- c_e end component in the link,
- uu user usage.

Influence power evaluation

Figure: Algorithm for user interface effectiveness assessment

Conclusions

the paper introduces general idea for definition of interfaces based on elements such as:

- templates,
- regions,
- characteristics components,
- interface states,
- the framework that may be used for evaluating of interfaces design and algorithms that aim at its recommendation is proposed,
- the effectiveness of interface design is assessed through computation of *IDE* matrices,
- the general algorithm for interface recommendation system evaluation has been proposed.

Thank you for your attention